If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15(t)^2+300(t)-200=0
a = -15; b = 300; c = -200;
Δ = b2-4ac
Δ = 3002-4·(-15)·(-200)
Δ = 78000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{78000}=\sqrt{400*195}=\sqrt{400}*\sqrt{195}=20\sqrt{195}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-20\sqrt{195}}{2*-15}=\frac{-300-20\sqrt{195}}{-30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+20\sqrt{195}}{2*-15}=\frac{-300+20\sqrt{195}}{-30} $
| 2p-68=p+21 | | 3(4x+8)+2x+19=180 | | k−59=13 | | 16x^2+16x+32=0 | | -35+e=16 | | n+26=64 | | -5t+41=-54 | | 11+x=7-2x | | 5x-17=8x-38 | | 3(x+9)=3x-12 | | 3n+6∣=21 | | -7/5=-1/2v-4/3 | | 9f-7=7f+1 | | 7=-3p+1 | | 12-x=9+2x | | 18+m=-72 | | (-12w+-8)=(36w-36) | | 16x-3=269* | | f(1/2)=1/2^3-2(1/2)^2 | | 61x-15=-137 | | f(-2)=-2^3-2(-2)^2 | | 10-4x=59 | | -2(v-6)=5v+40 | | f(2)=2^3-2(2)^2 | | 10+3(4x-9)=15x-5x+5 | | (a+5)+(8a-5)=180 | | 4x-3=3+x | | 80=1/2h(8+17) | | 65x+985x-15=21(50x+11) | | f(-2)=0^3-2(-2)^2 | | y-8.2=9.6 | | 22-6x=-x-(5-4x) |